翻訳と辞書
Words near each other
・ Malli Amman Durgham
・ Malli Maduve
・ Malli Malli Chudali
・ Malli Malli Idi Rani Roju
・ Malli Mastan Babu
・ Malli Seti
・ Malli-dong
・ Mallia Franklin
・ Malliabad
・ Mallial
・ Mallian Campaign
・ Mallian Kalan
・ Malliary
・ Malliavin calculus
・ Malliavin derivative
Malliavin's absolute continuity lemma
・ Mallica Reynolds
・ Mallica Vajrathon
・ Malliciah Goodman
・ Mallie Hughes
・ Mallie's Sports Grill & Bar
・ Mallie, Kentucky
・ Mallig Plains
・ Mallig, Isabela
・ Malligasta
・ Malligwad
・ Mallik
・ Mallik gas hydrate site
・ Mallik Island
・ Mallika


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Malliavin's absolute continuity lemma : ウィキペディア英語版
Malliavin's absolute continuity lemma
In mathematics — specifically, in measure theory — Malliavin's absolute continuity lemma is a result due to the French mathematician Paul Malliavin that plays a foundational rôle in the regularity (smoothness) theorems of the Malliavin calculus. Malliavin's lemma gives a sufficient condition for a finite Borel measure to be absolutely continuous with respect to Lebesgue measure.
==Statement of the lemma==

Let ''μ'' be a finite Borel measure on ''n''-dimensional Euclidean space R''n''. Suppose that, for every ''x'' ∈ R''n'', there exists a constant ''C'' = ''C''(''x'') such that
:\left| \int_} \mathrm \varphi (y) (x) \, \mathrm \mu(y) \right| \leq C(x) \| \varphi \|_
for every ''C'' function ''φ'' : R''n'' → R with compact support. Then ''μ'' is absolutely continuous with respect to ''n''-dimensional Lebesgue measure ''λ''''n'' on R''n''. In the above, D''φ''(''y'') denotes the Fréchet derivative of ''φ'' at ''y'' and ||''φ''|| denotes the supremum norm of ''φ''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Malliavin's absolute continuity lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.